Probing the determinants of coenzyme specificity in ferredoxin-NADP+ reductase by site-directed mutagenesis.

نویسندگان

  • M Medina
  • A Luquita
  • J Tejero
  • J Hermoso
  • T Mayoral
  • J Sanz-Aparicio
  • K Grever
  • C Gomez-Moreno
چکیده

On the basis of sequence and three-dimensional structure comparison between Anabaena PCC7119 ferredoxin-NADP(+) reductase (FNR) and other reductases from its structurally related family that bind either NADP(+)/H or NAD(+)/H, a set of amino acid residues that might determine the FNR coenzyme specificity can be assigned. These residues include Thr-155, Ser-223, Arg-224, Arg-233 and Tyr-235. Systematic replacement of these amino acids was done to identify which of them are the main determinants of coenzyme specificity. Our data indicate that all of the residues interacting with the 2'-phosphate of NADP(+)/H in Anabaena FNR are not involved to the same extent in determining coenzyme specificity and affinity. Thus, it is found that Ser-223 and Tyr-235 are important for determining NADP(+)/H specificity and orientation with respect to the protein, whereas Arg-224 and Arg-233 provide only secondary interactions in Anabaena FNR. The analysis of the T155G FNR form also indicates that the determinants of coenzyme specificity are not only situated in the 2'-phosphate NADP(+)/H interacting region but that other regions of the protein must be involved. These regions, although not interacting directly with the coenzyme, must produce specific structural arrangements of the backbone chain that determine coenzyme specificity. The loop formed by residues 261-268 in Anabaena FNR must be one of these regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.

CtXR (xylose reductase from the yeast Candida tenuis; AKR2B5) can utilize NADPH or NADH as co-substrate for the reduction of D-xylose into xylitol, NADPH being preferred approx. 33-fold. X-ray structures of CtXR bound to NADP+ and NAD+ have revealed two different protein conformations capable of accommodating the presence or absence of the coenzyme 2'-phosphate group. Here we have used site-dir...

متن کامل

Complete pyridine-nucleotide-specific conversion of an NADH-dependent ferredoxin reductase.

The coenzyme specificity of enzymes is one of the critical parameters for the engineered production of biological compounds using bacteria. Since NADPH is produced abundantly in photosynthetic organisms, conversion of an NADH-specific enzyme into an NADPH-specific one is a useful approach for the efficient carbon-neutral production of biological compounds in photosynthetic organisms. In the pre...

متن کامل

Probing the role of lysine 116 and lysine 244 in the spinach ferredoxin-NADP+ reductase by site-directed mutagenesis.

Two mutants of the spinach ferredoxin-NADP+ reductase (FNR) were constructed, expressed by using a heterologous expression system previously described (Aliverti, A., Jansen, T., Zanetti, G., Ronchi, S., Herrmann, R. G., and Curti, B. (1990) Eur. J. Biochem. 191, 551-555), and purified to homogeneity. The mutant enzymes FNR-Lys116Gln and FNR-Lys244Gln were similar to the wild-type enzyme in the ...

متن کامل

External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation.

Ferredoxin-NADP(+) reductase (FNR) is the structural prototype of a family of FAD-containing reductases that catalyze electron transfer between low potential proteins and NAD(P)(+)/H, and that display a two-domain arrangement with an open cavity at their interface. The inner part of this cavity accommodates the reacting atoms during catalysis. Loops at its edge are highly conserved among plasti...

متن کامل

An Examination by Site-Directed Mutagenesis of Putative Key Residues in the Determination of Coenzyme Specificity in Clostridial NAD+-Dependent Glutamate Dehydrogenase

Sequence and structure comparisons of various glutamate dehydrogenases (GDH) and other nicotinamide nucleotide-dependent dehydrogenases have potentially implicated certain residues in coenzyme binding and discrimination. We have mutated key residues in Clostridium symbiosum NAD(+)-specific GDH to investigate their contribution to specificity and to enhance acceptance of NADPH. Comparisons with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 15  شماره 

صفحات  -

تاریخ انتشار 2001